Personal insights

blog
The Interpretability of Artificial Intelligence and the Impact of Outcome Feedback on Trust: A Comparative Study The Interpretability of Artificial Intelligence and the Impact of Outcome Feedback on Trust: A Comparative Study | Xue Zhirong's knowledge base The Interpretability of Artificial Intelligence and the Impact of Outcome Feedback on Trust: A Comparative Study | Xue Zhirong's knowledge base The Interpretability of Artificial Intelligence and the Impact of Outcome Feedback on Trust: A Comparative Study Q3: How does result feedback and model interpretability affect user task performance? To assess trust more accurately, the researchers used behavioral trust (WoA), a measure that takes into account the difference between the user's predictions and the AI's recommendations, and is independent of the model's accuracy. By comparing WoA under different conditions, researchers can analyze the relationship between trust and performance. outcome Personal insights Translation thesis Original address: blog Personal insights The results show that feedback has a more significant impact on improving users' trust in AI than explainability, but this enhanced trust does not lead to a corresponding performance improvement. Further exploration suggests that feedback induces users to over-trust (i.e., accept the AI's suggestions when it is wrong) or distrust (ignore the AI's suggestions when it is correct), which may negate the benefits of increased trust, leading to a "trust-performance paradox". The researchers call for future research to focus on how to design strategies to ensure that explanations foster appropriate trust to improve the efficiency of human-robot collaboration. Problem finding blog
tool
summary thesis interview The results show that feedback has a more significant impact on improving users' trust in AI than explainability, but this enhanced trust does not lead to a corresponding performance improvement. Further exploration suggests that feedback induces users to over-trust (i.e., accept the AI's suggestions when it is wrong) or distrust (ignore the AI's suggestions when it is correct), which may negate the benefits of increased trust, leading to a "trust-performance paradox". The researchers call for future research to focus on how to design strategies to ensure that explanations foster appropriate trust to improve the efficiency of human-robot collaboration. solution Based on large language model generation, there may be a risk of errors. The researchers found that although it is generally believed that the interpretability of the model can help improve the user's trust in the AI system, in the actual experiment, the global and local interpretability does not lead to a stable and significant trust improvement. Conversely, feedback (i.e., the output of the results) has a more significant effect on increasing user trust in the AI. However, this increased trust does not directly translate into an equivalent improvement in performance. tool A3: The study found that the feedback of the results can improve the accuracy of the user's predictions (reducing the absolute error), thereby improving the performance of working with AI. However, interpretability does not have as much impact on user task performance as it does on trust. This may mean that we should pay more attention to how to effectively use feedback mechanisms to improve the usefulness and effectiveness of AI-assisted decision-making. blog
Interview
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0-9

Original address:0To assess trust more accurately, the researchers used behavioral trust (WoA), a measure that takes into account the difference between the user's predictions and the AI's recommendations, and is independent of the model's accuracy. By comparing WoA under different conditions, researchers can analyze the relationship between trust and performance.